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Section 1

INTRODUCTION AND PROBLEM DESCRIPTION

Background

In 1991 Dr. John Shoosmith, a researcher at the National Aeronautics and

Space Administration (NASA), proposed a new method for solving systems of

first-order differential equations in parallel. He presented his method and

a one-dimensional application of the algorithm to the 1991 International

Conference on Industrial and Applied Mathematics held in Washington, DC. His

original research proposal indicated plans to apply the method to a

two-dimensional test case such as the driven cavity problem (DCP). The

research documented in this report originated out of an attempt to apply his

algorithm to the DCP. It is shown herein that Dr. Shoosmith's method cannot

solve the DCP. In the course of the investigation additional results, some of

which may be new, were obtained.

The driven cavity problem is a standard problem in computational fluid

dynamics. A National Aeronautics and Space Administration publication in 1975

[Rubin] cites 10 articles on the subject during the period 1965 through 1974.

This same p'iblication documents DCP solutions obtained by eight research teams

working in coordination with NASA. The computations were typically performed

on a CDC 6400 mainframe computer for the purpose of comparing different

approaches. Undoubtedly many other papers on the DCP have made their way into

the literature since the writing of that publication. The primary advantage

of using this problem is that it is simple to describe but the solution is

fairly complicated and captures many salient features of fluid flow phenomena.

Another advantage is that accurate solutions are readily aviflable for

comparison.

If successful, Dr. Shoosmith's proposed method for solving large systems

of first-order differential equations would make use of parallel computation

by distributing eigenvector evaluations associated with an nth-order matrix to

n parallel processors. The strength of the method is its ability to perform

the eigenvector computation efficiently, but the method requires the matrix tc

have real, distinct eigenvalues. His one-dimensional test case provided a

solution to Burger's equation and the associated matrix did in fact have real,

distinct elgenvalues. It is shown in this report, however, that the spectrum
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of the matrix arising In the driven cavity problem contains complex

elgenvalues and, unfortunately, Dr. Shoosmith's method cannot provide a

solution. While investigating this problem, however, it was found that by

computing the spectrum of the matrix associated with a very coarse grid one

can gain considerable information about the solution. It is this observation

which may be new and of Interest to practicing computational fluid

dynamicists.

YT

1* lid
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L

Figure 1: Geometry of the Driven Cavity

The Driven Cavity Problem

Consider a rectangular cavity (Figure 1) with fixed sides and bottom

which contains a viscous, incompressible fluid. Along the top edge of the

cavity a flat surface, the "lid," capable of translating to the left is in

contact with the fluid. At time to the lid Instantaneously begins movement to

the left at a constant speed, U. The Navier-Stokes equations in the stream

function-vorticity formulation are [Ames]:

gt = - Oy + Oxg +L4xx+ • (1)
Ct andX + YRI.• s cXX e C

+ - (2)

where < (vorticity) and 0 (stream function) are related to the x and y

*2



velocity components (u,v) at every point within the cavity by

u = v =- = Vx Uy

For purposes of this report, the driven cavity problem is defined as follows:

If at time t = 0 the velocity everywhere within the cavity is zero, determine

C and 0 at every point within the cavity for all time greater than t = 0.

Additionally, in this report the length and width of the cavity are one

distance unit and the lid speed is one distance unit per unit time. With

these values the Reynolds number, R = UL/v, becomes simply i/v where v is the

fluid's kinematic viscosity.

Overview of Report

The following section describes how the partial differential equation for

vorticity, C., is converted into a system of ordinary differential equations.

Section 3 provides solutions to the driven cavity problem obtained by use of

conventional methods. Dr. Shoosmith's method for solving the coupled system

of ordinary differential equations is outlined In Section 4. In Section 5 the

spectral properties of the coefficient matrix are presented and discussed.

The initial eigenvalues and their migration during the time evolution of the

solution are remarkable because they strongly indicate that complex

eigenvalues arise in all numerical so]utions of the DCP and thus the method of

Dr. Shoosmith cannot be applied. Further interesting consequences of the
eigenvalues of A and their migration as the solution proceeds to steady state

are discussed as well. Section 6 contains some concluding remarks including

suggestions on further research.

Computational Equipment and Software

All computations were performed on a personal computer, a Unisys Series

800/20C with an 80386 CPU and an 80387 coprocessor. The programs were written

using Borland's Turbo Pascal Version 6, and are available from the author upon

request.
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Section 2

Applying the Method of Lines to the Partial Differential Equation

The method of lines is a semi-discrete method which is sometimes used to

solve partial differential equations (Ames]. The basic idea is to discretize

all independent variables but one, thus converting the system of partial

differential equations into a system of ordinary differential equations. The

driven cavity problem is amenable to this approach.

YT

+ 1,N + 2,N + N N
y y x y

x

SPIt + 21 + N ,I
x

x

Figure 2: Grid for Driven Cavity Problem

The method of lines requires a discretization of two of the three

independent variables and the usual procedure Is to select these to be the

spatial variables. Consider a regular grid superimposed on the interior of

t:,3 cavity as depicted in Figure 2. We denote the number of interior points

on any given row by N , and the number of Interior points on any given column
x

by N . The points are labeled such that the point P Is located aty Ii

x = i1x, y = jAy. Discretization gives rise to new dependent variables at

each grid point:

C= (iAx, jAy) V = O(iAx, jAy)

where

1= (i - 1)N + j

4



Note that this numbering system produces n =N - N new variables to representxy
both C and 0. It is convenient to slightly abuse the notation and define

the column vectors of these new unknowns as follows:

n n-

It is straightforward, now, to approximate both first and second-order

derivatives appearing in the first of the stream function-vorticity equations

(Equation 1) and thereby create a system of first-order ordinary differential

equations In C :

S= A(Oe)C + T(O) (3)

where A(@) is an n th-order matrix and T(O) is a column vector with n rows.

The derivation of each of these will be be discussed below.

Again using finite differences to approximate second-order derivatives, we

have in lieu of Poisson's equation (Equation 2) a linear algebraic system of

equations:

Do = -C (4)

where D is a constant n th-order matrix whose specific values will be derived

below. It is clear, now, that we must solve a coupled system of equations,

one a system of first-order ordinary differential equations and the other a

linear algebraic system of equations.

.5
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Figure 3: Node Types for Driven Cavity Grid

Determination of the components of the A(O) matrix is straightforward but

a bit tedious due to the many different cases to consider. There are, in

fact, nine separate situations which can occur as Figure 3 depicts. A sample

derivation for one of these cases, the top center, is now presented and the

results of similar derivations for the other eight possibilities are presented

in Appendix A.

A

B S C

t-1 t 0 +1

0 t-N

x

Figure 4: Top Interior Grid Point
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Consider the grid points around a general node on the top row, as

depicted in Figure 4. Using central differences for the spatial partial

derivatives yields the following O(h 2 ) semi-discrete equation at node f:

S t% ~+i -~ 1ti O+ t- S-ý

-- 2Ay J 2Ax [ 2Ax 2Ay J

+1 [t-1 - 2C+ + %+1 %_N -2Ct + CS

R Ax2  Ay2

We need to invoke the boundary conditions, now, to determine Os and 4S" We

let , = 0 on the entire boundary, but CS must be determined. We assume a no

slip condition at the fluid-lid interface, so

us •i = -1uS 
l

A fictitious node at A is now introduced so that

aol OA - Ot

-5JS 2Ay

Thus,

OA = - 2Ay

An O(h ) discrete approximation to Poisson's equation at S is

OS - 20S + OC Vt - 20S + #A

Ax2 Ay2

This yields

Ay=

Ay2

7



Applying this result to the ý equation and performing some algebraic

manipulation we obtain

2 4AxAy RAYxy 1 1Rx

r - - + 1

-2 1 + 1 + x + _ +
P;x 2  4AxAy RAx2Ie+1

(•.t- ~AY OtlC•2xy -y + py- Ay ]

I AXAy 3  RAY 4  I
The terms multiplying C-N - C-1' C,. and C+1 would be elements of A(O)

xon row t in columns t-Nx, t-1, t, and t+1, respectively. The last term

corresponds to the element in row t of the z(o) vector.

The matrix D in the discretized Poisson equation is easier to

derive because all terms are constant. The same nine cases occur, however,

and each must be considered separately. For example, consider a general node

in the extreme right column as depicted in Figure 5.

8
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Figure 5: Right Interior Grid Point

The discretized Poisson equation, then, becomes

Ot-1 - 20t + OS Ot-N - 24,t + 4,t+N
- x -+

+2 Ay2

After some manipulation we have

Ay x Ax~ ~ Ay2J I Ay

The equations for all nine node types are summarized in Appendix A.

This concludes the translation of the partial differential equation

Into a system of ordinary differential equations and of Poisson's equation

into an accompanying, coupled system of linear algebraic equations. In the

following section, this system is solved by conventional means on grids with

varying degrees of refinement.
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Section 3

SOLUTIONS TO THE DRIVEN CAVITY PROBLEM BY CONVENTIONAL METHODS

The Method

In this section results from solving the two systems of equations derived

above are presented. Those equations, repeated here for convenience, were

S= A) + 7(0~t) (3)

= -= (4)

where A(O) is a matrix of order n (n = Nx N y) which depends upon the value of

0, 7(0) is a column vector with n components which also depends upon the value

of 0, and D is a constant matrix of order n. Detailed expressions for A(O)

and 7(o) can be found in Appendix A.

Solutions of Equations 3 and 4 were obtained by use of the classical

fourth-order Runge-Kutta algorithm and the Gauss-Seidel Iterative method,

respectively. Initial values of zero were used for ý and 0. A single step of

the procedure consisted simply of propagating forward one time step for C by

Runge-Kutta, then solving for # by Gauss-Seidel to obtain the new value of i.

This updated value was then used to modify A(@) and 7(o) and the next time

step could then be taken. A fixed time step was used for each run of the

program. A stopping time was established by allowing the process to run until

a reasonably small value of the max norm of the right hand side of the

vorticity equation was noted (typically lx1O-5). It should be noted that far

more efficient differential equation solvers and linear algebraic system

solvers are available. The intent was not to solve the DCP in the most

efficient manner, but merely to generate solutions which could be used to

compute the spectrum of the coefficient matrix A(O), and which could be

compared with solutions generated by the method of Dr. Shoosmith.

10



Results

Validation of the solution method was accomplished by comparing C and

with published results. Memory limitations of Borland's Turbo Pascal and

computer time limitations prevented runs with grids as fine as desired.

However, by creating a series of three runs with successively finer grids it

was possible to numerically validate the method. In Figure 6, graphs at three

y locations (y = 0.25, y = 0.5, and y = 0.75) are presented for both < and 1.

Appendix B contains tabular listings of the results from this research. The

number of Intervals for the grids used in the present research are 4, 8, and

16 which correspond to n = 9, 49, and 225. In [Rubin] a grid with 64

intervals is used to determine C and @ , and values for x and y increments of

1/16 of a unit are published. These values are presented on the same graphs.

It appears that as grids are made finer the values of C and k, computed by the

method described above, approach the pqblished values of Rubin. Finer grids

could of course be used in order to be more certain that the solution

technique In this research Is accurate. The trend is sufficiently convincing,

however, that spectral results given later In this report are believed to be

reasonable.

A conventional technique for solving the DCP having been presented, along

with results obtained from applying the technique, we turn now to the method

of Dr. Shoosmith for solving systems of first-order ordinary differential

equations.

11
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Section 4

SOLUTION BY USE OF THE MATRIX EXPONENTIAL

This section describes the approach suggested by Dr. Shoosmith

[Shoosmith]. The method involves solving Equation 3, a coupled system of

first-order differential equations, by use of the matrix exponential. A

sketch of how Shoosmith's method might be used to solve the above vector

equations follows:

1. Use the Initial values of 0 and C to construct the matrix A(@) and

the vector 7(k).
At

2. Determine e , the "matrix exponential", which allows one to compute

Sat the (k+l)-st time interval, given ý at the k-th time

Interval by the equation

ACAt.)_ A1 ,(t
C = e Ck + e - I )k (5)

3. Use equation (4) to solve for 0k+2

4. Recompute the matrix A(V) and vector V(0) using the updated @.

5. Iterate steps 2. through 4. until t

A Pascal program, DCMEx (Driven Cavity by Matrix Exponential), was written to

implement this solution scheme [Stafford]. Some specifics on how the

algorithm described above were implemented are now presented.

The elgenvalues of A(O) are assumed to be real and distinct for all k&.

They are computed by converting the A matrix to upper Hessenberg form and then

applying the QR algorithm, The matrix A is then factored by a similarity

transformation. The specific technique used is to (1) explicitly compute the

right and left elgenvectors, (2) scale the left eigenvectors such that the

product of each right and left eigenvector (for the same eigenvalue) is unity,

and, (3) form two matrices S and T with the columns of S consisting of the

right elgenvectors of A(k) and the rows of T consisting of the scaled left

13



elgenvectors of A(M). This results in T being an approximation to the inverse

of S, and the matrix A(@) is thus diagonalized--i.e., A(O) can be written as

the product

A = S A S-
1

with A being a diagonal matrix with the eigenvalues of A along its diagonal.

The eigenvector computation is performed using the Inverse power method (also

called "inverse Iteration") and, except for the first time step, the program

uses the previous elgenvectors and eigenvalues as initial guesses for the new

elgenvectors and elgenvalues. The number of iterations needed by the inverse

iteration procedure Is used to control the step size, the assumption being

that If a pre-determined number of iterations is required then too large a

step must have been attempted.

This, then, Is a general description of the program written to implement

the method proposed by Dr. Shoosmith. Unfortunately, the program was

unsuccessful. When an equal number of row and column grid points were used

the program was unable to factor A(ks) at the outset. It was suspected, and

later confirmed, that the difficulty arose due to the existence of repeated

elgenvalues. When an unequal number of horizontal and vertical grid points

were used the program operated successfully for several iterations but

eventually bogged down well before reaching a steady state. Checks of the

elgenvalues seemed to indicate that although they began as real and distinct,

the A(kf) values evolved in time to bring some pairs of elgenvalues close

together. As these pairs came sufficiently close together they again caused

problems In the inverse iteration process for finding the elgenvectors. In

the following section the conventional method described in Section 3 is used

to compute the spectrum of A(O) as the solution progresses towards steady

state. This allows a better understanding of why Shoosmith's method falls on

this problem.

14



Section 5

SPECTRUM ANALYSIS OF THE COEFFICIENT MATRIX

Using the conventional methods to solve the driven cavity problem

described in Section 3, and standard matrix elgenvalue computation techniques

(reduction to upper Hessenberg form and QR Iteration), the spectrum of the

coefficient matrix in Equation 3 was obtained at several time instances during

the solution process. Eigenvalue computations were carried out for grids

having 9, 25, and 49 Internal points (which correspond to interval widths of

1/4, 1/6, and 1/8 unit, respectively), and the results are documented in

Tables 1, 2, and 3, and depicted graphically in Figures 7, 8, and 9.

Several observations can be made. First, the eigenvalues of A(*) at

t = 0 are real and repeated for each grid coarseness. Second, the eigenvalues

come off the real axis and become complex immediately after t = 0. (Although

the first value of t displayed In tLe tables and figures is at t = 1,

computations at the very first time interval In the simulation show the same

characteristic.) Third, note that regardless of the grid coarseness the

eigenvalue with largest real part (smallest real part in absolute value) is

around -0.2 and remains reasonably close to this value from t = 0 through t =

20 where the system is essentially at steady state.

The first two observations above justify the claim in the previous

section that the method of Dr. Shoosmith cannot be successful in solving the

driven cavity problem because the eigenvalues are not real and distinct for

all time. In fact, they are not real and distinct for any interval during the

solution if the grid contains an equal number of horizontal and vertical

intervals. Results for an unequal number of horizontal and vertical grid

points (N = 4, N = 3) are displayed in Table 4. This table implies thatx y

although the spectrum begins with real and distinct roots, as time progresses

some of the roots coalesce and become complex conjugate pairs. This

corresponds precisely to the behavior exhibited by the program which

implemented Dr. Shoosmith's method. The program ran nicely until the

eigenvalues had nearly coalesced but then stalled as it was unable to compute

eigenvectors when the spectrum contained nearly repeated eigenvalues. The

third observation is remarkable because of its implications for computational

i5



TABLE 1: SPECTRUM ANALYSIS OF 4X4 GRID

t =0.0 t =1.0 t =20.0
Real Imag Real Imag Real Imag

-0.1875 0.0000 -0.1902 0.0000 -0.1987 0.0000
-0.4137 0.0000 -0.4176 -0.0521 -0.4374 -0.1420
-0.4137 0.0000 -0.4176 0.0521 -0.4374 0.1420
-0.6400 0.0000 -0.6400 0.0000 -0.6400 0.0000
-0.6400 0.0000 -0.6400 -0.0737 -0.6400 -0.1785
-0.6400 0.0000 -0.6400 0.0737 -0.6400 0.1785
-0.8663 0.0000 -0.8624 0.0521 -0.8426 0.1420
-0.8663 0.0000 -0.8624 -0.0521 -0.8426 -0.1420
-1.0925 0.0000 -1.0898 0.0000 -1.0813 0.0000

TABLE 2: SPECTRUM ANALYSIS OF 6X6 GRID

t =0.0 t= 1.0 t =20.0
Real Imag Real Imag Real Imag

-0.1929 0.0000 -0.2291 0.0000 -0.2360 0.0000
-0.4565 0.0000 -0.5049 0.1152 -0.5371 0.2055
-0.4565 0.0000 -0.5049 -0.1152 -0.5371 -0.2055
-0.7200 0.0000 -0.8163 0.2185 -0.8103 0.0000
-0.8165 0.0000 -0.8163 -0.2185 -0.8743 -0.3145
-0.8165 0.0000 -0.8548 0.0000 -0.8743 0.3145
-1.0800 0.0000 -1.1560 -0.3382 -1.1468 0.0719
-1.0800 0.0000 -1.1560 0.3382 -1.1468 -0.0719
-1.1765 0.0000 -1.1874 0.0186 -1.2020 0.4338
-1.1765 0.0000 -1.1 874 -0.0186 -1.2020 -0.4338
-1.4400 0.0000 -1.4090 0.0000 -1.3289 0.0000
-1.4400 0.0000 -1.4400 0.0000 -1.4400 -0.6518
-1.4400 0.0000 -1.4400 -0.4491 -1.4400 0.0000
-1.4400 0.0000 -1.4400 0.4491 -1.4400 0.6518
-1.4400 0.0000 -1.4710 0.0000 -1.5511 0.0000
-1.7035 0.0000 -1.6926 0.0186 -1.6780 -0.4338
-1.7035 0.0000 -1.6926 -0.0186 -1.6780 0.4338
-1.8000 0.0000 -1.7240 -0.3382 -1.7332 0.0719
-1.8000 0.0000 -1.7240 0.3382 -1.7332 -0.0719
-2.0635 0.0000 -2.0252 0.0000 -2.0057 0.3145
-2.0635 0:0000 -2.0637 -0.2185 -2.0057 -0.3145
-2.1600 0.0000 -2.0637 0.2185 -2.0697 0.0000
-2.4235 0.0000 -2.3751 -0.1152 -2.3429 -0,2055
-2.4235 0.0000 -2.3751 0.1152 -2.3429 0.2055
-2.6871 0.0000 -2.6509 0.0000 -2.6440 0.0000
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TABLE 3: SPECTRUM ANALYSIS OF 8X8 GRID

tf0.0 t= 1.0 t=20.0
Real Imag Real Imag Real Imag

-0.1949 0.0000 -0.2594 0.0000 -0.2644 0.0000
-0.4723 0.0000 -0.5520 -0.1064 -0.6353 -0.2320
-0.4723 0.0000 -0.5520 0.1064 -0.6353 0.2320
-0.7498 0.0000 -0.8764 0.2768 -0.9208 0.3829
-0.8876 0.0000 -0.8764 -0.2768 -0.9208 -0.3829
-0.8876 0.0000 -0.9826 0.0000 -0.9646 0.0000
-1.1651 0.0000 -1.2837 0.0000 -1.3349 0.0000
-1.1651 0.0000 -1.3298 -0.4653 -1.3373 0.6460
-1.3774 0.0000 -1.3298 0.4653 -1.3373 -0.6460
-1.3774 0.0000 -1.4494 0.0000 -1.4724 0.0000
-1.5803 0.0000 -1.7619 -0.0421 -1.7498 -0.1456
-1.6549 0.0000 -1.7619 0.0421 -1.7498 0.1456
-1.6549 0.0000 -1.8274 0.5932 -1.8366 0.8500
-1.8673 0.0000 -1.8274 -0.5932 -1.8366 -0.8500
-1.8673 0.0000 -1.9036 0.0000 -1.9276 0.0000
-2.0702 0.0000 -2.2044 0.1222 -2.2034 0.2307
-2.0702 0.0000 -2.2044 -0.1222 -2.2034 -0.2307
-2.1447 0.0000 -2.28R5 0.0000 -2.2738 0.0000
-2.1447 0.0000 -2.2976 0.0000 -2.3323 0.0786
-2.2825 -0.0000 -2.3090 0.6996 -2.3323 -0.0786
-2.2825 0.0000 -2.3090 -0.6996 -2.3521 -0.9797
-2.5600 0.0000 -2.48-42 0.0000 -2.3521 0.9797
-2.5600 0.0000 -2.5600 0.0000 -2.5600 -1.4696
-2.5600 0.0000 -2.5600 -0.9745 -2.5600 1.4696
-2.5600 0.0000 -2.5600 0.9745 -2.5600 0.0000
-2.5600 0.0000 -25600 0.2821 -2.5600 0.3541
-2.5600 0.0000 -2.5600 -0.2821 -2.5600 -0.3541
-2.5600 0.0000 -2.6318 0.0000 -2.7679 -0.9797
-2.8375 -0.0000 -2.8110 -0.6996 -2.7679 0.9797
-2.8375 0.0000 -2.8110 0.6996 -2.7877 0.0786
-2.9753 0.0000 -2.8224 0.0000 -2.7877 -0.0786
-2.9753 0.0000 -2.8335 0.0000 -2.8462 0.0000
-3.0498 0.0000 -2.9156 -0.1222 -2.9166 0.2307
-3.0498 0.0000 -2.9156 0.1222 -2.9166 -0.2307
-3.2527 0.0000 -3.2164 0.0000 -3.1924 0.0000
-3.2527 0.0000 -3.2926 -0.5932 -3.2834 0.8500
-3.4651 0.0000 -3.2926 0.5932 -3.2834 -0.8500
-3.4651 0.0000 -3.3581 0.0421 -3.3702 0.1456
-3.5397 0.0000 -3.3581 -0.0421 -3.3702 -0.1456
-3.7426 0.0000 -3.6706 0.0000 -3.6476 0.0000
-3.7426 0.0000 -3.7902 0.4653 -3.7827 0.6460
-3.9549 0.0000 -3.7902 -0.4653 -3.7827 -0.6460
-3.9549 0.0000 -3.8363 0.0000 -3.7851 0.0000
-4.2324 0.0000 -4.1374 0.0000 -4.1554 0.0000
-4.2324 0.0000 -4.2436 -0.2768 -4.1992 -0.3829
-4.3702 0.0000 -4.2436 0.2768 -4.1992 0.3829
-4.6477 0.0000 -4.5680 -0.1064 -4.4847 -0.2320
-4.6477 0.0000 -4.5680 0.1064 -4.4847 0.2320
-4.9251 0.0000 -4.8606 0.0000 -4.8556 0.0000
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fluid dynamicists.

One can consider the system of first-order ordinary differential

equations as a time varying linear system with a time-varying input vector.

This is reasonable since 0 varies with time, and since A and 7 vary with 0,

they are uniquely determined at every instant of time. A crude but perhaps

useful approach to understanding the implication of the eigenvalue with

smallest real part in absolute value is to partition the time interval from

t=O to the time when steady state is agreed to have occurred, (0, t ], into
ms

intervals over which A is assumed to be constant. On each of these intervals
o•t

the solution for ý will contain a mode of the form v e where (' has a value1
close to -0.2. If on any time interval the forcing function 7 excites this

mode, it is reasonable to expect that steady state will not occur until the
o•t

time function e has fallen to some reasonably small value. All other modes

contain exponentials with more negative coefficients than -0.2 and hence their

effects would die out sooner than the dynamics of this mode. Thus, the effect

of this particular mode will tend to govern the time to steady state. Using a

nominal value of 0.01 for e we can make a crude estimate of the time for

steady state to occur as follows:

a'tsu 21n(lO)
e 0 0.01 . tss 2 - = 23 sec

where a value of c- = -0.2 has been used. Simulations in this report were all

run to final times of 20 seconds, a value chosen somewhat arbitrarily but

based loosely on the norm of the right hand side of Equation 3 becoming

sufficiently small (approximately 10-s). The value of 23 seconds predicted

above is, then, a reasonable estimate of t for this Reynolds number.
SE

Simulations were conducted with different Reynolds numbers and estimates of

times to steady state were obtained by the same method as above. Those
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estimates are contained in Table 5. Note that increasing the Reynolds number

Table 5: Estimates of Times to Steady State
for Various Reynolds Numbers

Reynolds Number ( Estimated t
SS

1 -19.49 0.24
10 - 1.949 2.4

100 - 0.1949 24.0
1000 - 0.01949 240.0

by a factor of 10 implies an increase by a factor of 10 in the time to steady

state. Observations made during runs confirmed that the estimates in the

table were reasonable, though no detailed numerical experiments were

performed.

It is not difficult to show that the eigenvalues at the initial time vary

in an uncomplicated fashion with Reynolds number. Let A(O;R) represent the

coefficient matrix A(O) with Reynolds number R. By examining the equations

we see that we can write
1

A(O;R) 2 K
RAx 2

where K is a 5-diagonal matrix with K = -4 and all other nonzero elementsli

unity. The spectrum of K is easy to determine numerically. For the 3x3 grid

we have the following elgenvalues of K:

A -1.172

A = A - -2.586
2 3

A = A = A - -4.000
4 5 6

A = A - -5.414
7 8

A - -6.828
9

The eigenvalues at t = 0 for any Reynolds number can be determined by
1

multiplying these values by 2. Thus, the smallest eigenvalue in absolute
RAx 2

value for R = 1, 10, 100, and 1000 for the 3x3 grid becomes a, = -18.75,

-1.875, -0.1875 and -0.01875. Comparing these values with those in Table 5 we

see that the change from initial to steady state in this critical value is

always in the same proportion.

23



Section 6

CONCLUSION

This report has demonstrated conclusively that Dr. Shoosmith's method for

parallelizing the numerical solution of systems of ordinary differential

equations has serious limitations. This is unfortunate, since there is still

no completely satisfactory method for taking advantage of parallel computers

in solving systems of ODEs. As Is usual with research, however, more

questions have been raised than were answered during this Investigation. Some

of these questions and suggestions for further investigation are now offered.

Suggestions for Further Research

At the heart of the Shoosmith method Is the use of inverse iteration to

solve for eigenvectors of the coefficient matrix, A(O), in parallel. It is

perhaps possible to develop an efficient algorithm which would (1) detect the

situation where eigenvalues are coalescing, (2) propagate the solution by an

alternative method until the eigenvalues become complex, (3) compute

eigenvectors or perhaps pairs of eigenvectors associated with these complex

roots in parallel, and (4) continue propagating the solution In parallel.

This appears to be a significant challenge, but tackling small systems (the

3x3 grid used in this report, for example) might provide insight Into how one

could proceed. If this is not possible, the method of Dr. Shoosmith will most

likely never be competitive with more conventional serial methods because the

classes of problems it would solve would be too restricted.

Other techniques for parallelizing the solution of systems of ODEs are

being actively pursued, most notably the Kryolov subspace methods proposed in

[Gallopoulos]. This method was actually applied to the driven cavity problem

in [Saad], but in the primitive variable formulation of the Navier Stokes

equations. It would be interesting to apply the Krylov subspace method to. the

stream function-vorticity formulation of the Navier-Stokes equations. A

comparison between the best conventional methods and a Krylov subspace method

using the same grid coarseness might prove interesting.

24



The observations given in Section 5 relating to estimating the time to

steady state need to be studied on more complicated geometries than just that

of the driven cavity. The goal of such research would be to determine if the

time to steady state is relatively insensitive to the shape of the boundary.

Since computation of the eigenvalues of the A(@) matrix on a coarse grid is

computationally inexpensive, one could decide if solving for the steady state

flow field by a time marching algorithm would be feasible for a given grid

coarseness. Perhaps other methods for predicting the time to steady state for

various Reynolds numbers already exist, but if not the results of this

research should be communicated to the computational fluid dynamics community.

There are other trends to be observed from the spectrum analysis

presented in Section 5. For example, the largest value of the imaginary parts

of eigenvalues grew from runs made with 4x4 grids to 6x6 grids to 8x8 grids:

the values were approximately 0.18, 0.65, and 1.5, respectively. These

maximum imaginary parts correspond to the highest frequency component to be

found in the solution for that particular grid coarseness. This information

is perhaps useful, but three points are not sufficient to define exactly how

the highest frequencies grow with increasingly finer grids. Another trend

could be explored. It was noted that the time step required for stability in

the conventional method described in Section 3 had to be considerably smaller

as the Reynolds number increased on grids with the same coarseness.

Typically, in computational fluid dymanics, capturing the flow details at high

Reynolds numbers takes a finer grid and thus more computational time [Rubin].

Consequently, it is natural to ask if there exists any information in the

spectrum of A(O) which would suggest how to overcome this. Also, can we

predict a reasonable time step size by performing a preliminary analysis of

the spectrum?

Finally, the work contained in this report could be useful for several

purposes not originally envisioned. While the driven cavity problem is

discussed considerably in the literature, this report provides a more detailed

development of the equations than one would generally find in refereed

articles, thereby making this interesting problem more accessible to faculty

and students. At USAFA the Department of Mathematica Sciences offers a course

in numerical analysis. Additionally, the Department of Aeronautics uses
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computational fluid dynamics in several of their aerodynamics courses. Much

of the tedious work needed to develop and verify the equations for the driven

cavity problem has been done and documented herein. Consequently, instructors

may find the driven cavity problem to be sufficiently challenging and

interesting to be used in conjunction with their classes. Different Poisson

solvers could be compared, for example, with the Gauss-Seidel method used in

this report. Also, performance of implicit ODE solvers might be compared with

that of the Runge-Kutta method. A better physical understanding of the

Navier-Stokes equations might also be gained using the methods in this report

to solve this problem numerically. From the numerical results, students can

then determine, for example, steady state velocity and pressure distributions

within the cavity.
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APPENDIX A

Equations Arising from the Method of Lines

Applied to the Driven Cavity Problem

In Section 2 the driven cavity problem was defined and a sample

derivation of equations arising from the method of lines was given. In this

appendix the complete set of equations used In all simulations is presented.

The symbol R is used throughout to denote the Reynolds number. The symbol h

is used to denote the ratio of the uniform interval widths in the y direction,

Ay, to the uniform widths in the x direction, Ax: h = Ay/Ax.

Node at Lower Left Corner:

2-2 2 1 + hz 2 21 4h 2 _ hRot÷N g~
h•Ax 2 R ( ) + 4h Ax R x

+ 1 4 + hR,+l ÷
4h Ax R Cti +Nx

+ [ -4(1 + h4 ) + hRk 4+ - h R3•+N

2h 4AxR X

h2lx2  - 2(1 + h )2  + h 2 +1 + =-,Nx) =
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Node on Bottom Interior:

1 (42+ +N

4h2 Ax2 R ( t+NJ

+ 21+ + 22 4h+2 1hRoIIh Ax R 4h Ax R ) 1+

+ 21 2 4 + WO•+ c ll}+
+ 2 Ax 2R (4 + h- )1]

2h'AX'R - + A"R { -4Rt @ -1 ]

21 2 h(Ot 1 - 2(1 + h2}q# + h2 t+1 + t+N = -h2 Ax2  iJ

Node at Lower Right Corner:

2 2 A-2 (12 .
4 = 2 4R + ) )e-1 + h -2 1 + R ct

+4h 2Ax 2 R (4h -2
+ 2 2 4 -hRqt._l}•+

-t 4(1 + h 4) - h~~'I- 3 ~V+
2h Ax4R x

h2 ot2  - 2(l + h12 + =
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Node on Right Interior:

4h 2 Ax2 R (4 + hRiv 1  x

S+24h2( hR(t+N - N))-1 + 2-2 ( 1 + h2

4h2AxR X h2AxxR

+ 1 4 - h R- -N)]

44h 2A2R11t+N x+- t 4h 4 + h 3R(•+ ;_x2hAx'RL x x

2h 4A.-x 4 RI ('t+Nx-OtNx

h2Ax2  h (0t_1 - 2(1 + h 2 )t•t + =

Node at Upper Right Corner:

•lý ( 4 + hl•tl)Ct._N

4h2Ax2R x

+ R 1 4h 2  _ hN- 1  + -2 1 + hh2 xCR4h 2AX2 - •tNx ÷C h 2 Ax2

+- t 4(l + h) h h3pR + hRkb

2h Ax4RI -N t_ 1

+ 3 - h 2)"' =

h2Ax2 +h 2-1 - 2(1 + h = t
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Node on Top Interior:

1 1 (

4hAx R (4 -x R +hx 2  - hRt-Nx

+h2,Ax2R( h) + 4h2Ax2R ( b. Rt/_Nx

+ h4t 4R[-- hR(o +- 0•I)
2h 4AX4 R[ t +i t-i)

+ 3 t3[ 4 + hR(o t~ - I-

212A (Ot-N + h2I/_l - 2(1 + h12 + h 2 Ji+1 =-
h2Ax2 @-x

Node at Upper Left Corner:

1 - / + -2 1 +h

4h 2Ax2 R x hAx2 R

+ 1 2 4h 2 + hR _
4hAx2R h x +i

+ 4 t4 -4( + h Rot-N - hRotv

2h Ax RLx
+ 31 3 4 + hR 1+l )

2h Ax3 R

21&2 I-t-N - 2(1 + h2 )of + h @b+1 = -2t
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Node on Left Interior:

4h 2 Ax2 R 4 hR ) x + h 2 Ax2 R ( 1 + h

+ 42XR4h2- Nx -Nx)e+1

+ 1 4 + hROb.+ CIt+N4h2AX2R f+) x

+ 2h4x4R[ -4h'- h3 R(I/+Nx-r_ ]

1 h 4(x4R1tNx-tN

t -N _ 2(1 + h 2)4,e +h2 + h2 N = _hZx @-x¢+1+ +N

Node on Interior:

4h 2Ax 2R x

+ 1 (4h 2 +h O+ -•lN )• -

4h 2 Ax 2 R ( + 1Rx't+N -x

+ -2 1I+ h( 2
h 2 Ax 2 R

+ 2R 4h 2  - hR Oft +Nx- @.-Nx C+1

+ 1 {4 + hR(O - )

4h 2 Ax2R t+i - ) Nx

1 + h2 0t 1 - +20+h 2(1 +h 2) + h2 Ot+1 + = -N
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APPENDIX B

APPROXIMATE SOLUTIONS TO DRIVEN CAVITY PROBLEM

zeta at y = 0.25
x Rubin 4x4 Grid 8xW Grid 16x16 Grid

0.00000
0.06250 -0.3786 -0.30814
0.12500 -0.4857 -0.28139 -0.38188
0.18750 -0.4998 -0.38597
0.25000 -0.4411 -0.03565 -0.20528 -0.34008
0.31250 -0.3449 -0.27175
0.37500 -0.2481 -0.12678 -0.20586
0.43750 -0.1763 -0.15785
0.50000 -0.1393 -0.04945 -0.09661 -0.13248
0.56250 -0.1338 -0.12657
0.62500 -0.1486 -0.09941 -0.13332
0.68750 -0.1729 -0.14698
0.75000 -0.2026 -0.07218 -0.11650 -0.16628
0.81250 -0.2429 -0.19480
0.87500 -0.3038 -0.15311 -0.23705
0.93750 -0.3869 -0.29086
1.00000

zeta at y = 0.5

x Rubin 4x4 Grid 8x8 Grid 16x16 Grid

0.00000
0.06250 -2.003 -1.67875
0.12500 -1.453 -0.68215 -1.22305
0.18750 -0.4999 -0.49712
0.25000 0.4174 0.53867 0.13994 0.17619
0.31250 1.034 0.62608
0.37500 1.291 0.42900 0.83624
0.43750 1.304 0.86333
0.50000 1.163 0.23901 0.38380 0.77608
0.56250 0.9431 0.62927
0.62500 0.6923 0.21847 0.45747
0.68750 0.4336 0.27544
0.75000 0.1633 0.01852 0.00636 0.07885
0.81250 -0.1518 -0.15454
0.87500 -0.5698 -0.29700 -0.45846
0.93750 -1.146 -0.86118
1.00000
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zeta at y = 0.75
x Rubin 4x4 Grid 8x8 Grid 16xl 6 Grid

0.00000
0.06250 -3.868 -2.99578
0.12500 1.649 2.60673 1.75368
0.18750 3.887 3.58481
0.25000 4.109 2.80310 2.78029 3.80277
0.31250 3.748 3.44705
0.37500 3.271 2.07229 2.94137
0.43750 2.785 2.42719
0.50000 2.313 0.37904 1.31124 1.94826
0.56250 1.861 1.51 369
0.62500 1.424 0.74053 1.11720
0.68750 0.9865 0.74171
0.75000 0.5156 0.34140 0.26235 0.35765
0.81250 -0.05295 -0.08234
0.87500 -0.8273 -0.31194 -0.64903
0.93750 -1.934 -1.42992
.1.00000

psi at y= 0.25
x Rubin 4x4 Grid 8x8 Grid 16xl 6 Grid

0.00000
0.06250 4.72200E-04 3.12544E-04
0.12500 2.21 900E-03 1.68049E-03 1.701 OOE-03
0.18750 5.24800E-03 4.10614E-03
0.25000 9.07400E-03 9.55538E-03 5.78823E-03 7.09378E-03
0.31250 1.29600E-02 1.00698E-02
0.37500 1.61700E-02 9.05850E-03 1.24858E-02
0.43750 1.81900E-02 1.39684E-02
0.50000 1.87900E-02 8.68265E-03 9.73202E-03 1.43601 E-02
0.56250 1.79700E-02 1.36939E-02
0.62500 1.59500E-02 7.93981 E-03 1.21371 E-02
0.68750 1.30700E-02 9.93331 E-03
0.75000 9.69900E-03 3.87427E-03 4.75398E-03 7.36243E-03
0.81250 6.23300E-03 4.72794E-03
0.87500 3.11700E-03 1.55483E-03 2.36728E-03
0.93750 8.59600E-04 6.61075E-04
1.00000

34



psi at y = 0.5
x Rubin 4x4 Grid 8x8 Grid

0.00000
0.06250 3.88300E-03
0.12500 1.48400E-02 1.24731 E-02
0.18750 2.99400E-02
0.25000 4.52000E-02 3.17669E-02 2.85576E-02
0.31250 5.74600E-02
0.37500 6.51300E-02 3.64173E-02
0.43750 6.791 OOE-02
0.50000 6.62600E-02 2.4391 8E-02 3.49585E-02
0.56250 6.09900E-02
0.62500 5.30000E-02 2.72142E-02
0.68750 4.31400E-02
0.75000 3.22400E-02 1.1 3257E-02 1.65020E-02
0.81250 2.11600E-02
0.87500 1.09700E-02 5.95756E-03
0.93750 3.20300E-03
1.00000

psi at y - 0.75

0.00000
0.06250 1.51400E-02
0.12500 4.521 OOE-02 4.78548E-02
0.18750 7.21500E-02
0.25000 9.01300E-02 5.94535E-02 6.70206E-02
0.31250 9.98400E-02
0.37500 1.03000E-01 6.74914E-02
0.43750 1.01 300E-01
0.50000 9.56700E-02 3.08536E-02 5.75064E-02
0.56250 8.70800E-02
0.62500 7.61400E-02 4.30256E-02
0.68750 6.32900E-02
0.75000 4.891 OOE-02 1.58792E-02 2.67681 E-02
0.81250 3.35300E-02
0.87500 1.82500E-02 1.07792E-02
0.93750 5.55400E-03
1.00000
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